Beyond Where to How: A Machine Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors †
نویسنده
چکیده
This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (<5 s). We investigated a wide range of supervised learning techniques for classification, including decision trees (DT), support vector machines (SVM), naive Bayes classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural networks (ANN) and several instance-based classifiers (KStar, LWLand IBk). Applying ten-fold cross-validation, the best performers in terms of correct classification rate (i.e., recall) were DT (96.5%), BN (90.9%), LWL (95.5%) and KStar (95.6%). In particular, the DT-algorithm RandomForest exhibited the best overall performance. After a feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity.
منابع مشابه
Visage: A Face Interpretation Engine for Smartphone Applications
Smartphones represent powerful mobile computing devices enabling a wide variety of new applications and opportunities for human interaction, sensing and communications. Because smartphones come with front-facing cameras, it is now possible for users to interact and drive applications based on their facial responses to enable participatory and opportunistic face-aware applications. This paper pr...
متن کاملImprovement of the Effective Components in the PDR Positioning Method Based on Detecting the User’s Movement Mode Using Smartphone Sensors
The purpose of this paper is to evaluate and improve the accuracy of indoor positioning using smartphone sensors based on Pedestrian Dead Reckoning (PDR) method. In some specific situations, such as fires or power outages that disable infrastructure-based positioning techniques, using PDR method based on smartphone sensors that perform positioning continuously is a good solution.This paper focu...
متن کاملDamage identification of structures using second-order approximation of Neumann series expansion
In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...
متن کاملField Evaluation of an Intelligible Context-Aware Application
Context-aware applications can facilitate people as they carry out their daily tasks. These applications can use a suite of sensors to detect what is happening in the environment and with the user. They can then infer the user intention. This way, they try to understand the contexts of the situation, and consequently act to provide services. For example, a smart phone can recognize that you are...
متن کاملGPS-Based Daily Context Recognition for Lifelog Generation Using Smartphone
Mobile devices are becoming increasingly more sophisticated with their many diverse and powerful sensors, such as GPS, acceleration, and gyroscope sensors. They provide numerous services for supporting daily human life and are now being studied as a tool to reduce the worldwide increase of lifestyle-related diseases. This paper describes a method for recognizing the contexts of daily human life...
متن کامل